Dirac fields in f ( R )-gravity with torsion
نویسندگان
چکیده
منابع مشابه
F (r) Gravity, Torsion and Non-metricity
For both f(R) theories of gravity with an independent symmetric connection (no torsion), usually referred to as Palatini f(R) gravity theories, and for f(R) theories of gravity with torsion but no non-metricity, called U4 theories, it has been shown that the independent connection can actually be eliminated algebraically, as long as this connection does not couple to matter. Remarkably, the out...
متن کاملNonperturbative Newtonian coupling in Einstein gravity with Dirac fields
– We investigate the exact renormalization group (RG) in Einstein gravity coupled to N-component spinor field, working in the effective average action formalism and background field method. The truncated evolution equation is obtained for the Newtonian and cosmological constants. We have shown that screening or antiscreening behaviour of the gravitational coupling depends crucially on the numbe...
متن کاملf(R) theories of gravity
Modified gravity theories have received increased attention lately due to combined motivation coming from high-energy physics, cosmology and astrophysics. Among numerous alternatives to Einstein’s theory of gravity, theories which include higher order curvature invariants, and specifically the particular class of f(R) theories, have a long history. In the last five years there has been a new st...
متن کاملThe phase transition of corrected black hole with f(R) gravity
In this letter, we consider static black hole in f(R) gravity.We take advantage from corrected entropy and temperature and investigate such black hole. Finally, we study the $ P - V $ critically and phase transition of corrected black hole with respect to entropy and temperature. Here also, we obtain the heat capacity for the static black hole in $ f(R) $ gravity. This calculation help us...
متن کاملCurvature scalar instability in f(R) gravity
An instability in the presence of matter in theories of gravity which include a 1/R correction in the gravitational action has been found by Dolgov and Kawasaki. In the present paper this instability is discussed for f(R) gravity in general. We focus on the Palatini formalism of the theory and it is shown that no such instability occurs in this version of f(R) gravity. The reasons for the appea...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Classical and Quantum Gravity
سال: 2011
ISSN: 0264-9381,1361-6382
DOI: 10.1088/0264-9381/28/12/125002